Continuous spectrum of Steklov nonhomogeneous elliptic problem

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous spectrum for a class of nonhomogeneous differential operators

We study the boundary value problem −div((|∇u|1 + |∇u|2)∇u) = λ|u|u in Ω, u = 0 on ∂Ω, where Ω is a bounded domain in R with smooth boundary, λ is a positive real number, and the continuous functions p1, p2, and q satisfy 1 < p2(x) < q(x) < p1(x) < N and maxy∈Ω q(y) < Np2(x) N−p2(x) for any x ∈ Ω. The main result of this paper establishes the existence of two positive constants λ0 and λ1 with λ...

متن کامل

Eigencurves for a Steklov Problem

In this article, we study the existence of the eigencurves for a Steklov problem and we obtain their variational formulation. Also we prove the simplicity and the isolation results of each point of the principal eigencurve. Also we obtain the continuity and the differentiability of the principal eigencurve.

متن کامل

Heat Invariants of the Steklov Problem

We study the heat trace asymptotics associated with the Steklov eigenvalue problem on a Riemannian manifold with boundary. In particular, we describe the structure of the Steklov heat invariants and compute the first few of them explicitly in terms of the scalar and mean curvatures. This is done by applying the Seeley calculus to the Dirichlet-to-Neumann operator, whose spectrum coincides with ...

متن کامل

On $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov‎ ‎processes

‎In the present paper we investigate the $L_1$-weak ergodicity of‎ ‎nonhomogeneous continuous-time Markov processes with general state‎ ‎spaces‎. ‎We provide a necessary and sufficient condition for such‎ ‎processes to satisfy the $L_1$-weak ergodicity‎. ‎Moreover‎, ‎we apply‎ ‎the obtained results to establish $L_1$-weak ergodicity of quadratic‎ ‎stochastic processes‎.

متن کامل

Absolutely Continuous Spectrum of One Random Elliptic Operator

In dimension d ≥ 5, we consider the differential operator (1.1) H0 = −∆+ τζ(x)|x|(−∆θ), ε > 0, τ > 0, where ∆θ is the Laplace-Beltrami operator on the unit sphere S = {x ∈ R : |x| = 1} and ζ is the characteristic function of the complement to the unit ball {x ∈ R : |x| ≤ 1}. The standard argument with separation of variables allows one to define this operator as the orthogonal sum of one-dimens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Opuscula Mathematica

سال: 2015

ISSN: 1232-9274

DOI: 10.7494/opmath.2015.35.6.853